摘要
摘要交通流预测是交通控制与管理,交通状况改善的重要参考指标。本文建立灰色模型和BP神经网络相结合的组合模型,利用灰色模型对实际监测到的数据进行拟合、预测,得到预测值和预测残差,将预测残差输入到神经网络模型进行残差的学习、仿真和预测,残差预测值和灰色模型预测值的和值作为最终预测结果。结果表明,用灰色模型对神经网络模型预测进行优化,其预测结果比单一的神经网络建模预测具有更高的准确性和实用性,提高了预测的精度。
出版日期
2018年12月22日(中国Betway体育网页登陆平台首次上网日期,不代表论文的发表时间)