一种基于 SURF特征提取与 FLANN匹配的目标物体识别算法的设计与研究

    在线阅读 下载PDF 导出详情
    摘要 摘要:针对传统的图像匹配算法存在误匹配率高,特征提取信息也比较少的问题。本文基于 BOW+SVM框架组合设计并实现了物品识别算法。对目标物体利用无监督学习的方法构造目标物体的识别模型,再与环境图像进行识别模型的特征点匹配,最后确定并且框选出目标物品。使用 SURF算法将目标物品的特征点提取出来,再结合 FLANN算法、特征点二次筛选算法与 RANSAC算法对目标物体进行识别与框选。
    作者 刘大鹏
    出处 《中国西部科技》 2020年6期
    出版日期 2020年05月20日(中国Betway体育网页登陆平台首次上网日期,不代表论文的发表时间)
    • 相关文献
    Baidu
    map