简介:Assumethateachcompletelyirrationalnoncommutativetorusisrealizedasaninductivelimitofcirclealgebras,andthatforacompletelyirrationalnoncommutativetorusAwofrankmthereareacompletelyirrationalnoncommutativetorusAρofrankmandapositiveintegerdsuchthattr(Aw)=1/d.tr(Aρ).ItisprovedthatthesetofallC^*-algebrasofsectionsoflocallytrivialC^*-algebrabundlesoverS^2withfibresAωhasagroupsturcture,denotedbyπ1^s(Aut(Aω)),whichisisomorphictoZifEd>1and{0}ifd>1.LetBcdbeacd-homogeneousC^*-algebraoverS^2×T^2ofwhichnonon-trivialmatrixalgebracanbefactoredout.ThesphericalnoncommutativetorusSρ^cdisdefinedbytwistingC^*(T2×Z^m-2)inBcd×C^*(Z^m-3)byatotallyskewmultiplierρonT^2×Z^m-2。ItisshownthatSρ^cd×Mρ∞isisomorphictoC(S^2)×C^*(T^2×Z^m-2,ρ)×Mcd(C)×Mρ∞ifandonlyifthesetofprimefactorsofcdisasubsetofthesetofprimefactorsofp.
简介:ThispapercontinuestheworkofD.MacHale,D.Flannery(Proc.R.Ir.Acad.81A,209—215;83A,189—196)andtheauthor(Proc.R.Ir.Acad,90A,57—62;J.SouthwestChinaNormalUniversity15,No.1,21.—28)onthetopicon“FinitegroupswithgivenAutomorphismgroup”.Thefollowingresultisproved:LetGbeafinitegroupwithAutGaSchmidtgroup.ThenGisisomorphictoS3orKlain4-group.,orDsuchthatAutD=InnD.DisaSchmidtgroupoforder2?p.S2(∈Syl2D)isanormalandspecialgroupexoeptasupersperspecialgroupwithoutcommutativegenerators.
简介:TheHuayuGroupiscomposedofonecoreenterprise,nineclosely-relatedenterprisesand16loosely-relatedenterprisesinAnhui,JiangsuandZhejiang.Itsbusinessincludesfinance,materials,knitwear,garmentsandeducation.AnhuiChuzhouHuayu(Group)Co.Ltd.—acoreenterpriseofHuayuGroup—isacomprehensiveenterprisegroup,integratingproduction,trade,scientificresearchanddevelopment.Ithasastaffof4,000,andeightfactoriesandfivecompaniesunderitsadministration.Majorproductsincludesixseriesyarn
简介:Itisprovedthatthereisnochaoticgroupactionsonanytopologicalspacewithfreearc.InthispaperthechaoticactionsofthegrouplikeG×F,whereFisafinitegroup,arestudied.Inparticular,underasuitableassumption,ifFisacyclicgroup,thenthetopologicalspacewhichadmitsachaoticactionofZ×Fmustadmitachatotichomeomorphism.Atopologicalspacewhichadmitsachaoticgroupactionbutadmitsnochaotichorneomorphismisconstructed.
简介:TheAnhuiChizhouJiedaGroupiscomposedof58units,includingAutoTransportGeneralCompany,JiedaCo.Ltd.,ComprehensiveDevelopmentGeneralCompanyandindependentlyaccountingunitsdirectlyaffiliatedtothegroup.Businessscopeinvolvesautotransportation,realestatedevelopment,garmentmaking,tourism,hotel,internalandexternaltrade,decoration,electronicdevelopment,buildingmaterials,repairandprinting,thusformingapatternwithtransport,tourism,industryandtradeasthefourpillars.Ithasnowastaffof4,000,assetsofRMB140million,
简介:TheGroupofTwenty(G20)isoneoftheprincipalforumsfocusingonglobaleconomiccooperationanditturnedouttobeanimportantplatformforemergingeconomiesinparticipatinginglobaleconomicgovernance.AsanimportantmemberofG20,Chinaisnotonlyaparticipant,constructorandbeneficiaryofthecurrentinternationalsystem,butalsothe
简介:BangbuBayiChemicalsGroupisanenterpriseassignedbytheMinistryofChemicalIndustrytoproducenitrochlorobenzeneseriesproducts.Ithasstrongtechnicalforces,advancedproductiontechnologyandqualitycontrolmeasures.Productsinclude20varietiesofchloro-anhydrideseriesandnitrochlorobenzeneseries.Theyarewidelyusedinpesticides,medicines,dyestuffs,rubber,dailychemicals,leatherandpapermaking.Amongthese,thepara-nitrochlorobenzeneandotherthreeproductsrankfirstinproductionscaleinChina,winningthetitlesofexcellentproductsfromtheMinistryofChemicalIndustry.ManyproductssellwellinsoutheastAsia,EuropeandtheAmericas.
简介:IntroductionTeachingpractice(TP)isanessentialcomponentoftheEnglishcourseatTeachers’collegesinChina,inwhichnewrecruitsareprovidedwithaplatformtoputwhattheylearninthetrainingprogrammeintopractice.Theradicalchangefromlearnertoteacherusuallymeansadifficultbeginningfortrainees,althoughtheyhavefirst-handexperienceoflearningEnglishasaforeignlanguage.Facingatextbook,ofwhicheachlessonconsistsofseveralcomponents:newwords,sentencepatterns,text,grammar,andexercises,theyarerequiredtoworkoutlessonplanswhichwillensuretheachievementoftheteachingobjectives.
简介:一、什么是STUDYGROUPSTUDYGROUP是牛津大学的A.B.Tayler博士和当时他的学生J.Ockendon等人在1968年创立的,它的原名是OxfordStudyGroupwithIndustry。这种活动历时一周,是由数学工作者和工业界人士参加的旨在解决实际问题的研讨会。在研讨会的第一天,由工业界代表陈述要解决的问题和目的要求,通常会有5~6个问题。后续2~3天按问题分组讨论,试图建立问题的数学模型和求解方法来解决问题。若问题比较
简介:WeknowthatforacodeC,it‘sveryimportanttofindouttheAutomorphismgroupAutCofC.However,itisverydifficulttoseekentireAutC.Inthispaper,usingtheG.Iofmatricesoverafinitefield,wegiveseveralmethodstojudgewhetherapermutationσ∈S_n.(Symmetricgroup)belongstoAutCornot.Theyarehelpfulforthepurposetoex-