学科分类
/ 1
3个结果
  • 简介:

  • 标签:
  • 作者:凌人男杨若峰易芹芹饶梓彬杨熠金洪涛程立新
  • 学科:医药卫生>
  • 创建时间:2021-10-24
  • 出处:《磁共振成像》2021年第10期
  • 机构:深圳市人民医院(暨南大学第二临床医学院,南方科技大学第一附属医院)放射科,深圳 518020,上海交通大学约翰·霍普克罗夫特计算机科学中心,上海 200240,深圳市人民医院(暨南大学第二临床医学院,南方科技大学第一附属医院)妇产科,深圳 518020,深圳市人民医院(暨南大学第二临床医学院,南方科技大学第一附属医院)病理科,深圳 518020,深圳市人民医院(暨南大学第二临床医学院,南方科技大学第一附属医院)ICU,深圳 518020
  • 简介:摘要目的探索基于多参数MRI的放射组学特征和神经网络模型在区分宫颈癌淋巴结转移的效能。材料与方法回顾性分析178例宫颈癌并提取9个临床及病理特征,经过方差分析进而提取3个特征进入模型。两位观察者分别用软件勾勒得到感兴趣容积,提取到428个放射组学特征。放射组学特征结合临床及病理特征建模:分别组成428维、437维、431维模型。通过Python库的torch和sklearn构建并评价神经网络模型和支持向量机模型。组内相关系数(intraclass correlation coefficient,ICC)来评估观察者之间的信度,使用分类准确率、敏感度、特异度和受试者特征曲线下面积(area under the receiver operating characteristics curve,AUC)用来衡量检测模型性能。使用sklearn中的metrics.roc_curve函数绘制ROC曲线,通过最大约登指数(Youden index)确定最佳界值,并进行诊断效能评估。结果两位观察者ICC为0.819、观察者内ICC为0.796。431维神经网络模型AUC为0.882,在测试集中该模型的分类准确率、敏感度和特异度分别为0.810、0.840和0.741,优于其他模型。结论基于多参数MRI的神经网络模型可有效地预测宫颈癌淋巴结转移。

  • 标签:宫颈癌淋巴结转移影像组学机器学习
Baidu
map