摘要
摘要:基于深度学习的自然语言处理技术是当前自然语言处理领域的热门研究方向。本文旨在探讨基于深度学习的自然语言处理技术的研究进展和应用情况,并分析其在提升语言理解、文本生成和机器翻译等任务中的重要性。首先通过文献综述和调研,对基于深度学习的自然语言处理技术的发展历程和现状进行了概述。然后,重点讨论了关键技术,包括神经网络模型、词嵌入和语义表示、序列建模和注意力机制等,并分析了它们在自然语言处理中的应用和优化策略。同时,对比分析了传统自然语言处理技术与基于深度学习的技术的差异和优势。最后,针对当前的研究热点和挑战,提出了未来的研究方向和发展趋势。通过本文的研究,可以更全面地了解基于深度学习的自然语言处理技术的重要性和应用前景,为进一步的研究和应用提供指导。
出版日期
2023年11月28日(中国Betway体育网页登陆平台首次上网日期,不代表论文的发表时间)