HPSO-based fuzzy neural network control for AUV

    在线阅读 下载PDF 导出详情
    摘要 Afuzzyneuralnetworkcontrollerforunderwatervehicleshasmanyparametersdifficulttotunemanually.Toreducethenumerousworkandsubjectiveuncertaintiesinmanualadjustments,ahybridparticleswarmoptimization(HPSO)algorithmbasedonimmunetheoryandnonlineardecreasinginertiaweight(NDIW)strategyisproposed.OwingtotherestraintfactorandNDIWstrategy,anHPSOalgorithmcaneffectivelypreventprematureconvergenceandkeepbalancebetweenglobalandlocalsearchingabilities.Meanwhile,thealgorithmmaintainstheabilityofhandlingmultimodalandmultidimensionalproblems.TheHPSOalgorithmhasthefastestconvergencevelocityandfindsthebestsolutionscomparedtoGA,IGA,andbasicPSOalgorithminsimulationexperiments.ExperimentalresultsontheAUVsimulationplatformshowthatHPSO-basedcontrollersperformwellandhavestrongabilitiesagainstcurrentdisturbance.ItcanthusbeconcludedthattheproposedalgorithmisfeasibleforapplicationtoAUVs.
    机构地区 不详
    出版日期 2008年03月13日(中国Betway体育网页登陆平台首次上网日期,不代表论文的发表时间)
    • 相关文献
    Baidu
    map