IDENTIFICATION OF GAS-LIQUID FLOW REGIMES IN A HORIZONTAL FLOW USING NEURAL NETWORK

    在线阅读 下载PDF 导出详情
    摘要 Theknowledgeofflowregimesisveryimportantinthestudyofatwo-phaseflowsystem.AnewflowregimeidentificationmethodbasedonaProbabilityDensityFunction(PDF)andaneuralnetworkisproposedinthispaper.Theinstantaneousdifferentialpressuresignalsofahorizontalflowwereacquiredwithadifferentialpressuresensor.ThecharactersofdifferentialpressuresignalsfordifferentflowregimesareanalyzedwiththePDF.Then,fourcharacteristicparametersofthePDFcurvesaredefined,thepeaknumber(K1),themaximumpeakvalue(K2),thepeakposition(K3)andthePDFvariance(K4).Thecharacteristicvectorswhichconsistofthefourcharacteristicparametersastheinputvectorstraintheneuralnetworktoclassifytheflowregimes.Experimentalresultsshowthatthisnovelmethodforidentifyingair-watertwo-phaseflowregimeshastheadvantageswithahighaccuracyandafastresponse.Theresultsclearlydemonstratethatthisnewmethodcouldprovideanaccurateidentificationofflowregimes.
    机构地区 不详
    出版日期 2005年01月11日(中国Betway体育网页登陆平台首次上网日期,不代表论文的发表时间)
    • 相关文献
    Baidu
    map