摘要
认知诊断模型中,项目参数的方差-协方差矩阵具有很重要的作用。作为一种非参数化的方差-协方差矩阵估计方法,Bootstrap法的一个主要优势在于它不需要解析推导。比较认知诊断模型中基于解析法的经验交叉相乘信息矩阵、观察信息矩阵和三明治协方差矩阵法,与Bootstrap法在估计项目参数标准误时的表现,模拟结果显示,认知诊断模型及Q矩阵正确设定或是模型中错误设定较少时,解析法的表现优于Bootstrap法,只有在样本量N=5000的条件下,Bootstrap法的表现才基本与解析法接近;当模型中错误设定较多时,Bootstrap法也没有表现出明显的稳健性。因此,在认知诊断模型中,推荐使用基于解析法的方差-协方差矩阵估计方法,尤其是三明治协方差矩阵法;当没有现成的基于解析法的方差-协方差矩阵估计方法可用时,Bootstrap法可以作为一种粗略的估计方法使用,尤其是在样本量较小的情况下。
出版日期
2019年04月14日(中国Betway体育网页登陆平台首次上网日期,不代表论文的发表时间)