Artificial neural network simulation for prediction of suspended sediment concentration in the River Ramganga, Ganges Basin, India

    在线阅读 下载PDF 导出详情
    摘要 Therelationbetweenthewaterdischarge(Q)andsuspendedsedimentconcentration(SSC)oftheRiverRamgangaatBareilly,UttarPradesh,intheHimalayas,hasbeenmodeledusingArtificialNeuralNetworks(ANNs).Thecurrentstudyvalidatesthepracticalcapabilityandusefulnessofthistoolforsimulatingcomplexnonlinear,realworld,riversystemprocessesintheHimalayanscenario.ThemodelingapproachisbasedonthetimeseriesdatacollectedfromJanuarytoDecember(2008-2010)forQandSSC.ThreeANNs(T1-T3)withdifferentnetworkconfigurationshavebeendevelopedandtrainedusingtheLevenbergMarquardtBackPropagationAlgorithmintheMatlabroutines.Networkswereoptimizedusingtheenumerationtechnique,and,finally,thebestnetworkisusedtopredicttheSSCvaluesfortheyear2011.ThevaluesthusobtainedthroughtheANNmodelarecomparedwiththeobservedvaluesofSSC.Thecoefficientofdetermination(R2),fortheoptimalnetworkwasfoundtobe0.99.ThestudynotonlyprovidesinsightintoANNmodelingintheHimalayanriverscenario,butitalsofocusesontheimportanceofunderstandingariverbasinandthefactorsthataffecttheSSC,beforeattemptingtomodelit.Despitethetemporalvariationsinthestudyarea,itispossibletomodelandsuccessfullypredicttheSSCvalueswithverysimplisticANNmodels.
    机构地区 不详
    出版日期 2019年02月12日(中国Betway体育网页登陆平台首次上网日期,不代表论文的发表时间)
    • 相关文献
    Baidu
    map