摘要
Sentimentanalysis,ahotresearchtopic,presentsnewchallengesforunderstandingusers'opinionsandjudg-mentsexpressedonline.Theyaimtoclassifythesubjectivetextsbyassigningthemapolaritylabel.Inthispaper,weintroduceanovelmachinelearningframeworkusingauto-encodersnetworktopredictthesentimentpolaritylabelatthewordlevelandthesentencelevel.Inspiredbythedimensionalityreductionandthefeatureextractioncapabilitiesoftheauto-encoders,weproposeanewmodelfordistributedwordvectorrepresentation"PMI-SA"usingasinputpointwise-mutual-information"PMI"wordvectors.Theresultedcontinuouswordvectorsarecombinedtorepresentasentence.Anunsupervisedsentenceembeddingmethod,calledContextualRecursiveAuto-Encoders"CoRAE",isalsodevelopedforlearningsentencerepresentation.Indeed,CoRAEfollowsthebasicideaoftherecursiveauto-encoderstodeeplycomposethevectorsofwordsconstitutingthesentence,butwithoutrelyingonanysyntacticparsetree.TheCoRAEmodelconsistsincombiningrecursivelyeachwordwithitscontextwords(neighbors'words:previousandnext)byconsideringthewordorder.Asupportvectormachineclassifierwithfine-tuningtechniqueisalsousedtoshowthatourdeepcompositionalrepresentationmodelCoRAEimprovessignificantlytheaccuracyofsentimentanalysistask.Experimentalresultsdemon-stratethatCoRAEremarkablyoutperformsseveralcompetitivebaselinemethodsontwodatabases,namely,SanderstwittercorpusandFacebookcommentscorpus.TheCoRAEmodelachievesanefficiencyof83.28%withtheFacebookdatasetand97.57%withtheSandersdataset.
出版日期
2018年06月16日(中国Betway体育网页登陆平台首次上网日期,不代表论文的发表时间)