摘要
InInternetenvironment,trafficflowtoalinkistypicallymodeledbysuperpositionofON/OFFbasedsources.DuringeachON-periodforaparticularsource,packetsarriveaccordingtoaPoissonprocessandpacketsizes(henceservicetimes)canbegenerallydistributed.Inthispaper,weestablishheavytrafficlimittheoremstoprovidesuitableapproximationsforthesystemunderfirst-infirst-out(FIFO)andwork-conservingservicediscipline,whichstatethat,whenthelengthsofbothON-andOFF-periodsarelightlytailed,thesequencesofthescaledqueuelengthandworkloadprocessesconvergeweaklytoshort-rangedependentreflectingGaussianprocesses,andwhenthelengthsofON-and/orOFF-periodsareheavilytailedwithinfinitevariance,thesequencesconvergeweaklytoeitherreflectingfractionalBrownianmotions(FBMs)orcertaintypeoflongrangedependentreflectingGaussianprocessesdependingonthechoiceofscalingasthenumberofsuperposedsourcestendstoinfinity.Moreover,thesequencesexhibitastatespacecollapse-likepropertywhenthenumberofsourcesislargeenough,whichisakindofextensionofthewell-knownLittle’slawforM/M/1queueingsystem.Theorytojustifytheapproximationsisbasedonappropriateheavytrafficconditionswhichessentiallymeanthattheserviceratecloselyapproachesthearrivalratewhenthenumberofinputsourcestendstoinfinity.
出版日期
2012年04月14日(中国Betway体育网页登陆平台首次上网日期,不代表论文的发表时间)