Heavy Traffic Limit Theorems for a Queue with Poisson ON/OFF Long-range Dependent Sources and General Service Time Distribution

    在线阅读 下载PDF 导出详情
    摘要 InInternetenvironment,trafficflowtoalinkistypicallymodeledbysuperpositionofON/OFFbasedsources.DuringeachON-periodforaparticularsource,packetsarriveaccordingtoaPoissonprocessandpacketsizes(henceservicetimes)canbegenerallydistributed.Inthispaper,weestablishheavytrafficlimittheoremstoprovidesuitableapproximationsforthesystemunderfirst-infirst-out(FIFO)andwork-conservingservicediscipline,whichstatethat,whenthelengthsofbothON-andOFF-periodsarelightlytailed,thesequencesofthescaledqueuelengthandworkloadprocessesconvergeweaklytoshort-rangedependentreflectingGaussianprocesses,andwhenthelengthsofON-and/orOFF-periodsareheavilytailedwithinfinitevariance,thesequencesconvergeweaklytoeitherreflectingfractionalBrownianmotions(FBMs)orcertaintypeoflongrangedependentreflectingGaussianprocessesdependingonthechoiceofscalingasthenumberofsuperposedsourcestendstoinfinity.Moreover,thesequencesexhibitastatespacecollapse-likepropertywhenthenumberofsourcesislargeenough,whichisakindofextensionofthewell-knownLittle’slawforM/M/1queueingsystem.Theorytojustifytheapproximationsisbasedonappropriateheavytrafficconditionswhichessentiallymeanthattheserviceratecloselyapproachesthearrivalratewhenthenumberofinputsourcestendstoinfinity.
    作者 Wan-yang DAI
    机构地区 不详
    出版日期 2012年04月14日(中国Betway体育网页登陆平台首次上网日期,不代表论文的发表时间)
    • 相关文献
    Baidu
    map