简介:哈萨克斯坦是世界最大的内陆国家,拥有典型的大陆性气候和多样的地理环境及生态系统,同时哈萨克斯坦的自然环境和人类社会对于气候变化这一全球性问题是敏感的、脆弱的,需要运用科学的研究方法应对气候变化的挑战。通常,区域或局地尺度的气候变化影响研究需要对气候模式输出或再分析资料进行降尺度以获得更细分辨率的气候资料。近年来,大量验证统计降尺度方法在各个地区能力的研究见诸文献,然而在哈萨克斯坦地区验证统计降尺度方法的研究非常少见。本文使用了岭回归的方法对哈萨克斯坦地区11个气象站点1960-2009年的月平均气温进行了统计降尺度研究。结果显示,使用前30年数据和岭回归模型建立大尺度预报因子和观测资料的统计关系可以较好地预测后20年的月平均气温,预测能力在各站各月均有不同程度的差异,地形复杂的站点预测效果较差,夏季预测结果好于冬季;此外,将哈萨克斯坦地区平均来看则与观测数据相吻合。
简介:开展了基于嵌套的全球模式MIROC和区域气候模式WRF的动力降尺度模拟试验,检验该模式对中国气候的模拟性能,得到以下结论:全球气候模式MIROC和WRF都能较好地模拟出中国年平均地表气温(下文简称气温)分布。WRF模式对气温场的描述更为细致,模拟出了四川盆地高温和中国最北方区域的低温。两个模式总体上对南方降水模拟好于北方地区,东部地区好于西部地区。MIROC模式模拟的年平均和各季节降水与观测的空间相关系数在0.79~0.83之间,表明它对降水的模拟较好。WRF模式模拟的降水空间分布好于MIROC模式。MIROC模式在青藏高原东南侧存在虚假降水中心,WRF能有效改进该地区降水的模拟。两个模式对年平均气温和降水年际变率的模拟能力均较差,WRF模式相对MIROC模式有一定改进。
简介:基于CORDEX计划的试验设计,利用区域气候模式RegCM3对全球模式FGOALS-g2在RCP8.5情景下的预估结果进行动力降尺度,预估了南亚地区未来近期(2016~2035年)和远期(2080~2099年)的夏季气候变化特征。结果显示,未来两个时段的气候变化空间分布类似,只是远期的变化幅度更大。具体表现为:高低空急流减弱,低空急流中心向北移动。南亚地区整体降水减少,但其北部降水显著增加。降水变化的空间分布主要受降水频率的控制,且降水频率随强度分布的变化表现出明显的地域差异。降水的未来变化特征与水汽输送的变化有密切联系。在区域模式中,受低空急流减弱和北移的影响,水汽输送减弱,对应降水减少。而在全球模式中,虽然季风环流也在减弱,但可降水量增加起主导作用,使得预估的水汽输送增强、降水量增加。
简介:以2003年5月29日福州市LandsmETM+影像为数据源,对2种地表温度空间降尺度算法——EM算法和HUTS算法进行实验、比较与分析,EM算法是利用高空间分辨率的地表比辐射率对低空间分辨率的亮度温度影像进行调节,从而达到提高热红外影像空间分辨率的目的;HUTS算法则是引入了归一化差异植被指数NDVI和地表反照率d,通过在低空间分辨率拟合二者与地表温度LST之间的关系,然后根据其尺度不变性,将该关系应用到高空间分辨率的影像上,从而达到提高热红外影像空间分辨率的目的.研究结果表明:1)2种算法所得结果影像都能在有效提高空间分辨率的同时较好地保持了原始地表温度影像的空间分布特征,达到了较好的降尺度效果;2)以RMSE为定量评价指标,HUTS算法要略优于EM算法,其中,EM算法的RMSE为1.2494,而HUTS算法仅为0.9869.
简介:基于降水与地形起伏之间的非平稳关系,结合有限的观测降水数据,利用GWR回归模型,对贵州喀斯特山区的TRMM3B43降水资料进行降尺度和校准,最终得到空间分辨率为1km×1km的降水量分布数据并进行了验证。结果显示:(1)考虑地形起伏和降水空间非平稳性的GWR模型,提高了贵州喀斯特山区TRMM3B43遥感降水资料的空间分辨率和准确度。(2)不同时间尺度的验证结果表明,在与观测降水的相关统计中,TRMM降尺度降水具有较TRMM3B43降水更高的统计精度和更小的误差,更接近于地面观测降水;该降尺度算法在贵州降水较少的时间尺度更加接近真实值。(3)当TRMM3B43可以被重采样的地形起伏度(RDLS)进行准确预测时,TRMM3B43的精度是GWR降尺度算法中的主要误差源;当区域的降水与地形起伏弱相关或无关时,应考虑引入其他影响降水的空间变量来修正这一空间非平稳性关系。